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Quantum Vacuum Radiation
and Detection Proposals
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We first review the 20-year-old results of Letaw on stationary vacuum radiation patterns
originating from world lines defined as Frenet–Serret curves. The corresponding body
of literature as well as the experimental proposals that have been suggested to detect
quantum vacuum field radiation patterns, are shortly presented and some related topics,
such as the anomalous Doppler effect and the decay of accelerated protons are also
included.
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1. INTRODUCTION

We present a review on vacuum quantum field radiation and related analog
radiation patterns organized in three parts that can be considered an update and
change-of-viewpoint version of our previous reviews of these topics (Rosu, 2001,
2002). The first part is theoretical and describes this type of radiation as correlated
zero-point fluctuations detected by quantum particles forced to move on Frenet–
Serret four-dimensional classical trajectories. The second part is an overview of
various detection proposals, of which none has turned into a dedicated experiment
till now. Moreover, many (almost all) of these proposals bring under the same label
different types of quantum field effects being a supply of continuous confusions
for many readers. Some of them employ concepts like Unruh radiation, which
is most often incorrect since they refer in fact to Unruh’s interpretation of the
field vacuum as a thermal bath from the point of view of noninertial observers
(reference frames) and, if the radiation is real, it should be explained first in the
inertial frames. Other experimental setups are closer to interpretations in terms of
dynamical (nonadiabatic) Casimir effect. On the other hand, if the case of Frenet–
Serret trajectories for relativistic particles is taken into account, then we have real
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vacuum radiation patterns, i.e., in the inertial frame. Thus, the claim to detect is not
for Unruh radiation but for signals of the vacuum radiation corresponding to some
Frenet–Serret relativistic trajectories of relativistic two-level quantum systems
or moving mirrors. Moreover, the radiation patterns will not be exactly of the
Frenet–Serret (or Letaw) type that require continuous trajectories up to the third
derivative (this can be seen from the tetrad in Eqs. (9–12) below) whereas quantum
trajectories are known to be some sort of fractal curves (Sornette, 1990; Abbott and
Wise, 1981; Kröger, 1997; Ghose and Home, 1994; Jadczyk, 1995). Nevertheless,
the possibility of getting approximate Frenet–Serret radiative vacuum signals is
interesting from the fundamental point of view and stimulating for scientific-
related technology. Finally, the third part of the present review refers to some
related topics such as the anomalous Doppler effect and the decay of accelerated
protons.

2. FRENET–SERRET VACUUM RADIATION: THEORY

Frenet (1816–1900) wrote a doctoral thesis in 1847. Part of it deals with the
theory of space curves and contains six formulas of the nine three-dimensional
Frenet–Serret formulas. He published his results in Journal de mathematiques
pures et appliques in 1852. Serret (1819–1885) gave the set of all nine formulas
in three dimensions.

The standard FS formulas are the following

�̇T = κ · �N
�̇N = τ · �B − κ · �T
�̇B = −τ · �N.

These three formulas give the derivatives of the unit tangent, normal, and binormal
vectors, respectively, as vectorial combinations of the moving basis in which the
two Frenet–Serret invariants of the normal three-dimensional space, curvature and
torsion, respectively, enter as scalar coefficients. They can be written in matrix
form as well 


�̇T
�̇N
�̇B


 =




0 κ 0

−κ 0 τ

0 −τ 0







�T
�N
�B


 . (1)

The plane formed by the span of �T and �N is called the osculating plane. The span
of �N and �B is the normal plane and the span of �B and �T is the transverse plane to
the curve at the point where the Frenet–Serret triad is considered.

For the goals of the first part of this review, the interested reader may consult
several papers of more recent times. These are seminal papers that apply the
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Frenet–Serret formalism to relativistic world lines and quantum field theory. First,
as quoted by Synge, in 1947, Jasper (1947), studied helices in flat space of n

dimensions, but only for a positive–definite metric. Next, Synge wrote an important
paper on time-like helices in flat space-time and classified them in six types
according to the relative magnitudes of the three Frenet–Serret invariants (Synge,
1967). He also proved for the first time that the world line of a charged particle
moving in a constant electromagnetic field is a helix. A few years later, in the
seminal paper of Honig et al. (1974), a connection was established between the
Lorentz invariants of the elctromagnetic field and the Frenet–Serret invariants.
The 1981 Letaw’s paper (Letaw, 1981), is in fact the first work in which the FS
invariants and quantum field concepts are merged together (see below). Interesting
generalizations to more dimensions, black-hole environments, and gyroscopic
precession have been investigated by Iyer and Vishveshwara (1988) (see also Bini
et al. (1999).

We also notice that at the strictly classical level, the Frenet–Serret coordinate
system is quite used in accelerator physics to express Hamiltonians and/or fields
(Lee, 2000).

2.1. Stationary World Lines and the Vacuum Excitation
of Noninertial Detectors

In 1981, Letaw studied the stationary world lines, on which quantized field
detectors in a scalar vacuum have time-independent excitation spectra. They are
characterized by the requirement that the geodetic interval between two points
depends only on the proper time interval. He used a generalization of the Frenet
equations to Minkowski space and found, not surprisingly, that the curvature
invariants are the proper acceleration and angular velocity of the world line.
Solving the generalized Frenet equations for the simple case of constant invariants
leads to several classes of stationary world lines. Letaw gave a classification
into six types reviewed here. He also demonstrated the equivalence of the time-
like Killing vector field orbits and the stationary world lines. Last but not least,
Letaw did some calculations of the vacuum excitation spectra of detectors on
the sample of six families of stationary world lines. Letaw’s work has a link
with Unruh’s famous interpretation concerning the excitation of a scalar-particle
detector moving with constant linear acceleration in the massless scalar vacuum
of flat spacetime that “looks” to such particles as a thermal state of Unruh(!) scalar
particles of temperature given by acceleration/2π .

According to DeWitt, the probability for a detector moving along a world
line xµ(τ ) to be found in an excited state of energy E at τ = τ0 is given in terms
of the autocorrelation function of the field (Wightman function)

P (E) = D(E)
∫ τ0

−∞
dτ

∫ τ0

−∞
dτ ′e−iE(τ−τ ′)〈0|φ(x(τ ))φ(x(τ ′))|0〉, (2)
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where D(E) is a function characterizing the sensitivity of the detector. The Wight-
man function for a scalar field is proportional to the inverse of the geodetic interval
�(τ, τ ′)

〈0|φ(x(τ ))φ(x(τ ′))|0〉 = [2π2�(τ, τ ′)]−1, (3)

where

�(τ, τ ′) = [xµ(τ ) − xµ(τ ′)][xµ(τ ) − xµ(τ ′)]. (4)

The rate of excitation to the state with energy E is the Fourier cosine transform

dp(E)

dτ0
= 2D(E)

∫ 0

−∞
ds〈0|φ(x(τ0))φ(x(τ0 + s))|0〉 cos(Es). (5)

where s = τ − τ ′ is the proper time interval. The rate of excitation (the response)
is directly related to the energy spectrum of the detected scalar “particles”

S(E, τ ) = 2πρ(E)
∫ 0

−∞
ds〈0|φ(x(τ ))φ(x(τ + s))|0〉 cos(Es). (6)

If the Wightman function is time independent the detected spectra are stationary.
This is equivalent to the following property of the geodetic interval

�(τ, τ + s) = �(0, s). (7)

2.1.1. Curvature Invariants and the Frenet Equations

An arbitrary time-like world line in flat space is generally described by four
functions, xµ(s), specifying the coordinates of each point s on the curve. This
parameter may be taken to be the arc length or proper time on the world line. The
parametric representation is unsatisfactory in two respects:

(1) A world line is a geometric object and should not require a coordinate-
dependent entity for its definition.

(2) There is an inherent redundancy in the parametric representation since
three functions suffice to determine the world line.

The Frenet–Serret (curvature) invariants, on the other hand, provide an intrinsic
definition of the world line not subject to these criticisms.

The starting point is the construction of an orthonormal tetrad V
µ
a (s) at every

point on the world line xµ(s). The Latin index everywhere is a tetrad index.
The tetrad is formed from the derivatives of xµ(s) with respect to proper time
(represented by one or more dots). It is assumed that the first four derivatives are
linearly independent, the results being practically unchanged when they are not.
Members of the tetrad must satisfy the orthonormality condition

VaµV
µ

b = ηab, (8)
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where the metric has diagonal components (1,−1,−1,−1) only.
By Gramm–Schmidt orthogonalization of the derivatives working upwords

from the first, the following expressions for the tetrad are found:

V
µ

0 = ẋµ, (9)

V
µ

1 = ẍα

(−ẍαẍα)1/2
, (10)

V
µ

2 = (ẍγ ẍγ )
...
x

µ −(ẍγ

...
x

γ
)ẍµ + (ẍγ ẍγ )2ẋµ

[(ẍαẍα)4 + (ẍαẍα)(ẍβ

...
x

β
)2 − (ẍαẍα)2(

...
x

β ...
x

β
)]1/2

, (11)

V µ
a = 1√

6
εαβγµV0αV1βV2γ , (12)

Overall signs on these vectors are fixed by the orientation of the tetrad.
The tetrad V µ

σ is a basis for the vector space at a point on the world line.
Derivatives of the basis vectors may therefore be expanded in terms of them:

V̇ µ
a = Kb

a V
µ

b . (13)

These are the generalized Frenet equations. Kab is a coordinate-independent matrix
whose structure must be determined.

Differentiation of the orthonormality condition (8) yields

V̇aµV
µ

b + VaµV̇
µ

b = 0, (14)

and, in view of (13),

Kab = −Kba. (15)

A basis vector V
µ
a is defined in terms of the first a + 1 derivatives of xµ; there-

fore, V̇
µ
a will be a linear combination of the first a + 2 derivatives. These a + 2

derivatives are dependent only on the basis vectors V
µ

b where b ≤ a + 1. This and
(15) limit the matrix to the form

Kab =




0 −κ(s) 0 0

κ(s) 0 −τ1(s) 0

0 τ1 0 −τ2

0 0 τ2 0


 (16)

The three functions of proper time are the invariants

κ = V0µV̇
µ

1 = −V̇0µV
µ

1 , (17)

τ1 = V1µV̇
µ

2 = −V̇1µV
µ

2 , (18)
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τ2 = V2µV̇
µ

3 = −V̇2µV
µ

3 . (19)

They are, respectively, the curvature, the first torsion, and the second torsion
(hypertorsion) of the world line. Sign choices are made for reasons brought out
below.

To explore the physical significance of the invariants we examine the in-
finitesimal Lorentz transformations of the tetrad at a point on the world line. The
transformations leave the metric invariant

ηab = Lc
aL

d
bηcd . (20)

An infinitesimal transformations may be written

Lc
a = δc

a + dεc
a, (21)

where the elements of dεc
a are small and must satisfy

dεab = −dεba, (22)

The transformations are taken to be active; that is, the transformed tetrad moves by
+v and is rotated by θ relative to the untransformed tetrad. Thus the infinitesimal
generator is

dεab =




0 −dv1 −dv2 −dv3

dv1 0 −dθ12 dθ13

dv2 dθ12 0 −dθ23

dv3 −dθ31 dθ23 0


 (23)

The change in the tetrad resulting from this transformation is

V̇ µ
a = (

dεb
a/ds

)
V

µ

b . (24)

Equations (24) are identical to the Frenet Eqs. (13); therefore, the physical content
of the curvature invariants is found by comparison of (16) and (23).

2.1.2. Physical Interpretation of the FS Invariants

The following interpretations of the FS kinematic invariants is quite well
known

κ is the proper acceleration of the world line which is always parallel to V ν
1 .

τ1 and τ2 are the components of proper angular velocity of the world line in the
planes spanned by V

µ

1 and V
µ

2 , and V
µ

2 and V
µ

3 , respectively. The total proper
angular velocity is the vector sum of these two invariants.
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2.1.3. Stationary Motions

The simplest world lines are those whose curvature invariants are constant.
They are called stationary because their geometric properties are independent of
proper time. One also finds that only observers on these world lines may establish
a coordinate system in which they are at rest and the metric is stationary. Clearly,
the geodetic interval between two points on a stationary world line can depend
only on the proper time interval, therefore they are the world lines on which a
detector’s excitation is time independent.

The Frenet Eq. (13) may be reduced to a fourth-order linear Equation in V ν
0

when the curvature invariants are constant
...

V
µ

0 − 2aV̈
µ

0 − b2V
µ

0 = 0, (25)

where

a = 1
2

(
κ2 − τ 2

1 − τ 2
2

)
, b = |κτ2|.

The other basis vectors are determined from V
µ

0 by the Equations

V
µ

1 = V̇ µ/κ (26)

V
µ

2 = (
V̈

µ

0 − κ2V
µ

0

)/
κτ1 (27)

V
µ

3 =
[ ...

V
µ

0 −(
κ2 − τ 2

1

)
V̇

µ

0

] /
κτ1τ2. (28)

Equation (25) is homogeneous with constant coefficients. The four roots of the
characteristic equation are ±R+ and ±iR−, where

R± = [
(a2 + b2)1/2 ± a

]1/2
. (29)

The solution is of the form

V
µ

0 = Aµ cosh(R+s) + Bµ sinh(R+s)Cµ cos (R−s) + Dµ sin (R−s). (30)

Using (26)–(28) and (30) at s = 0 and the initial conditions (V µ
a )s=0 = δ

µ
a one can

get the following expressions for the coefficients

Aµ = R−2(R2
− + κ2, 0, κτ1, 0), (31)

Bµ = R−2(0, κ(R2
− + κ2 − τ 2)/R+, 0, κτ1τ2/R+), (32)

Cµ = R−2(R2
+ − κ2, 0,−κτ1, 0), (33)

Dµ = R−2(0, κ(R2
+ − κ2 − τ 2)/R−, 0,−κτ1τ2/R−), (34)

with R2 = R2
+ + R2

−. From these results on the FS tetrad one gets easily the six
classes of stationary world lines and the corresponding excitation spectra.
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2.1.4. The Six Stationary Scalar Frenet–Serret Radiation Spectra

1. κ = τ1 = τ2 = 0 (inertial, uncurved world lines)
The excitation spectrum is a trivial cubic spectrum

Srecta(E) = E3

4π2
, (35)

i.e., as given by a vacuum of zero point energy per mode E/2 and density
of states E2/2π2.

2. κ 	= 0, τ1 = τ2 = 0 (hyperbolic world lines)
The excitation spectrum is Planckian allowing the interpretation of κ/2π

as “thermodynamic” temperature. In the dimensionless variable εκ = E/κ

the vacuum spectrum reads

Shyp(εκ ) = ε3
κ

2π2(e2πεκ−1)
. (36)

3. κ| < |τ1|, τ2 = 0, ρ2 = τ 2
1 − κ2 (helical world lines)

The excitation spectrum is an analytic function corresponding to the case
4 below only in the limit κ 
 ρ

Shel(ερ)
κ/ρ→∞−→ S3/2−parab (εκ ). (37)

Letaw plotted the numerical integral Shei(ερ), where ερ = E/ρ for various
values of κ/ρ.

4. κ = τ1, τ2 = 0, (if spatially projected: semicubical parabolas
y =

√
2

3 κx3/2)
The excitation spectrum is analytic, and since there are two equal curvature
invariants one can use the dimensionless energy variable εκ

S3/2−parab(εκ ) = ε2
κ

8π2
√

3
e−2

√
3εκ . (38)

It is worth noting that S3/2−parab, being a monomial times an exponential,
is quite close to the Wien-type spectrum Sw ∝ ε3e−const.ε .

5. |κ| > |τ1|, τ2 = 0, σ 2 = κ2 − τ 2
1 (if spatially projected: catenaries

x = κ cosh(y/τ ))
In general, the catenary spectrum cannot be found analytically. It is an
intermediate case, which for τ/σ → 0 tends to Shyp, whereas for τ/σ →
∞ tends toward S3/2−parab

Shyp(εκ )
0←τ/σ←− Scatenary(εσ )

τ/σ→∞−→ S3/2−parab(εκ ). (39)

6. τ2 	= 0 (rotating world lines uniformly accelerated normal to their
plane of rotation)
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The excitation spectrum is given in this case by a two-parameter set of curves.
These trajectories are a superposition of the constant linearly accelerated motion
and uniform circular motion. The corresponding vacuum spectra have not been
calculated by Betaw, not even numerically.

Thus, only the hyperbolic world lines, having just one nonzero curva-
ture invariant, allow for a Planckian excitation spetrum and lead to a strictly
one-to-one mapping between the curvature invariant κ and the “thermody-
namic” temperature (Thyp = κ/2π ) The excitation spectrum due to semicubi-
cal parabolas can be fitted by Wien-type spectra, the radiometric parameter
corresponding to both curvature and torsion. The other stationary cases, being
nonanalytical, lead to approximate determination of the curvature invariants, den-
ning locally the classical world line on which a relativistic quantum particle
moves.

To this end, I mention that Letaw introduced the terminology ultratorsional,
paratorsional, infratorsional, and hypertorsional for the scalar stationary cases
3–6, respectively.

2.2. The Electromagnetic Vacuum Radiation

For the case of homogeneous electromagnetic field, Honig et al. proved that
the FS scalars remain constant along the world line of a charged particle, whereas
the FS vectors obey a Lorentz force equation of the form

u̇µ = F̄ µ
ν uν (40)

with Fµν = λF̄ µ
ν , the electromagnetic field tensor, λ = e/mc2 and u̇µ the four-

velocity of the particle.
A remarkable physical interpretation of the FS invariants in terms of

the Lorentz invariants of the electromagnetic field was established by Honig
et al.

κ2 − τ 2
1 − τ 2

2 = λ2(E2 − H 2), κτ2 = λ2( �E · �H ). (41)

These beautiful results passed quite unnoticed until now. They could be used
for a geometric transcription of homogeneous electromagnetism and therefore for
the geometric “calibration” of electromagnetic phenomena.

The FS formalism has not been used for the electromagnetic vacuum noise.
Other approaches have been undertaken for this important case of which a rather
complete one is due to Hacyan and Sarmiento that is briefly presented in the
following.
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2.2.1. The Hacyan–Sarmiento Approach

Starting with the expression for the electromagnetic energy–momentum
tensor

Tµν = 1

16π

(
4FµαFα

ν + ηµνFλβF λβ
)
, (42)

Hacyan–Sarmiento define the electromagnetic two-point Wightman functions as
follows

D+
µν(x, x ′) ≡ 1

4

(
4Fα

(µ(x)Fν)α(x ′) + ηµνFλβ(x)Fλβ(x ′)
)
; (43)

D−
µν(x, x ′) ≡ D+

µν(x ′, x). (44)

This may be viewed as a variant of the “point-splitting” approach advocated by
DeWitt. Moreover, because of the following mathematical properties

ηµνD±
µν = 0, D±

µν = D±
νµ, ∂νD

±ν
µ = 0, (45)

the electromagnetic Wightman functions can be expressed in terms of the scalar
Wightman functions as follows

D±
µν(x, x ′) = c∂µ∂νD

±(x, x ′), (46)

where c is in general a real constant depending on the case under study. This
shows that from the standpoint of their vacuum fluctuations the scalar and the
electromagnetic fields are not so different.

Now introduce sum and difference variables

s = t + t ′

2
; α = t − t ′

2
. (47)

Using the Fourier transforms of the Wightman functions

D̃±(ω, s) =
∫ ∞

−∞
dσe−iwσ D±(s, σ ), (48)

where ω is the frequency of zero-point fields, the particle number density of the
vacuum seen by the moving detector and the spectral vacuum energy density per
mode are given by

n(ω, s) = 1

(2π )2ω

[
D̃+(ω, s) − D̃−(ω, s)

]
, (49)

de

dω
= ω2

π

[
D̃+(ω, s) + D̃−(ω, s)

]
. (50)
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Circular World Lines. The most important application of these results is to
a uniformly rotating detector whose proper time is s and angular speed is ω0 in
motion along the circular world line

xα(s) = (γ s, R0 cos(ω0s), R0 sin(ω0s), 0), (51)

where R0 is the rotation radius in the inertial frame, γ = (1 − v2)−1/2, and v =
ω0R0/γ . In this case there are two Killing vectors kα = (1, 0, 0, 0) and mα(s) =
(0,−R0 sin(ω0s), R0 cos(ω0s), 0). Expressing the Wightman functions in terms
of these two Killing vectors, HS calculated the following physically observable
spectral quantities (i.e., those obtained after subtracting the inertial zero-point field
contributions):

• The spectral energy density

de

dω
= γ 3

2π3R3
0

ω2 + (γ vω0)2

ω2

v3w2

w2 + (2γ v)2
hγ (w), (52)

• The spectral flux density

dp

dω
= γ 3

2π3R3
0

ω2 + (γ vω0)2

ω2
4v4kγ (w), (53)

• The spectral stress density

ds

dω
= γ 3

2π3R3
0

ω2 + (γ vω0)2

ω2

v3w2

w2 + (2γ v)2
jγ (w). (54)

The ratio (ω2 + (γ vω0)2)/ω2 is a density-of-states factor introduced for
convenience.

The Hacyan–Sarmiento variables are w = 2ω
ω0

and x = σω0
2 , whereas

hγ (w), kγ (w) and jγ (w) are the following cosine-Fourier transforms

hγ (w) ≡
∫ ∞

0

(
Nh(x, v)

γ 2[x2 − v2 sin2 x]3
− 3

x4
+ 2γ 2v2

x2

)
cos(wx) dx; (55)

kγ (w) ≡ −
∫ ∞

0

(
Nk(x, v)

γ 2[x2 − v2 sin2 x]3
− 3

x4
− γ 2

6x2

)
cos(wx) dx; (56)

jγ (w) ≡
∫ ∞

0

(
1

γ 4[x2 − v2 sin2 x]2
− 1

x4
+ 2γ 2v2

3x2

)
cos(wx) dx. (57)

The numerators Nh(x, v) and Nk(x, v) are given by

Nh(x, v) = (3 + v2)x2 + (v2 + 3v4) sin2 x − 8v2 sin x; (58)

Nk(x, v) = x2 + v2 sin2 x − (1 + v2)x sin x. (59)
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Ultra-relativistic Limit: γ 
 1. The functions Hγ = v3w2

w2+(2γ v)2 hγ (w),
Kγ = 4v4kγ (w), Jγ = v3w2

w2+(2γ v)2 jγ (w), all have the following scaling property

Xkγ (kw) = k3Xγ (w) where k is an arbitrary constant, and X = H,K, J , respec-
tively. This is the same scaling property as that of a Planckian distribution with a
temperature proportional to γ .

Nonrelativistic Limit: γ � 1. A detailed discussion of the nonrelativistic-
limit for the scalar case has been provided by Kim et al. (1987), who used the
parameters v and ω0, and not acceleration and speed as used by Letaw and Pfautsch
for the circular scalar case (Letaw and Pfautsch, 1980). They obtained a series
expansion in velocity

de

dω
= ω3

π2

[
ω0

γω

∞∑
n=0

v2n

2n + 1

n∑
k=0

(−1)k
(n − k − ω

γω0
)2n+1

k!(2n − k)!
�

(
n − k − ω

γω0

)]
,

(60)

where � is the usual Heavy-side step function. Thus, to a specified power of the
velocity many vacuum harmonics could contribute; making the energy density
spectrum quasi-continuous. For low frequencies the difference between the scalar
and electromagnetic case is small. Besides, one can consider only the first few
terms in the series as an already good approximation.

2.3. Nonstationary Vacuum Radiation Patterns

Nonstationary vacuum field radiation has a time-dependent spectral content
requiring joint time and frequency information, i.e., one needs generalizations of
the power spectrum concept. One can think of (i) tomographical processing and/or
(ii) wavelet transforms. For instance, the recently proposed noncommutative to-
mography (NCT) transform M(s; µ, ν) (Man’ko and Vilela Mendes, 1999), if
relativistically generalized, could be an attractive way of processing nonstationary
signals. In the definition of M, s is just an arbitrary curve in the noncommutative
time-frequency plane, while µ, and ν are parameters characterizing the curve.
The most simple examples are the axes s = µt + νω, where µ and ν are linear
combination parameters. The noncommutative tomography transform is related to
the Wigner–Ville quasi-distribution W (t, ω) by an invertible transformation and
has the following useful properties

M(t ; 1, 0) = |f (t)|2, (61)

M(ω; 0, 1) = |f (ω)|2, (62)

where f is the analytic signal which is simulated by M . Furthermore, employing
M leads to an enhanced detection of the presence of signals in noise which has
a small signal-to-noise ratio. The latter property may be very useful in detecting
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vacuum field radiation noises, which are very small “signals” with respect to more
common noise sources.

On the other hand, since in the quantum detector method, the vacuum auto-
correlation functions are the essential physical quantities. In addition, accord-
ing to various fluctuation–dissipation theorems these functions are related to
the linear (equilibrium) response functions to an initial condition/vacuum. The
fluctuation–dissipation approach has been developed and promoted by Sciama
and collaborators (Candelas and Sciama, 1977). In principle, the generalization of
the fluctuation–dissipation theorem for some classes of out of equilibrium relax-
ational systems, such as glasses, looks also promising for the case of nonstation-
ary vacuum noise. One can use a so-called two-time fluctuation–dissipation ratio
X(t, t ′) and write a modified fluctuation–dissipation relationship (Cugliandolo
et al., 1997),

Teff(t, t
′)R(t, t ′) = X(t, t ′)

∂C̃(t, t ′)
∂t ′

(63)

where R is the response function and C̃ the autocorrelation function. The
fluctuation–dissipation ratio is employed to perform the separation of scales.
Moreover, Teff are timescale-dependent quantities, making them promising for
relativistic vacuum radiation, which corresponds naturally to out of equilibrium
conditions.

The necessity of a generalized nonequilibrium formalism, has been also
emphasized in the same context but using the influence functional formalism
(Feynman and Vernon, 1963), by Hu and Johnson (2002). The basic idea is to treat
the quantum field vacuum as a sort of coarse-grained environment through which
the quantum particles move.

3. DETECTION PROPOSALS

A number of model experiments to detect the Frenet–Serret vacuum radiation
patterns have been suggested in the last 20 years (Rosu, 2001, 2002). Because
the curvature thermodynamic temperature is given by Tκ = h

2πck
a a this leads to

Tκ = 4.10−23 a and one needs accelerations greater than 1020g⊕ to have “thermal”
effects of only a few Kelvins. On the other hand, one should focus below the
Schwinger acceleration for copious spontaneous pair creation out of QED vacuum

aSchw ≈ mec
3/h ≈ 1029m/s2 ≈ 1028g⊕, (64)

There are indeed several physical settings in which accelerations can be achieved
only a few orders below the Schwinger acceleration and forthcoming technological
advances could test routinely those acceleration scales. The stationary FS vacuum
radiation patterns could be revealed as tiny signals in the background of by far
more powerful effects.
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3.1. Vacuum Radiation Effects in Storage Rings (a ∼ 1022 g⊕, Tκ = 1200 K)

Bell and Leinaas imagined the first laboratory phenomenon connected to the
FS radiation effects. During 1983–1987 they published a number of papers on the
idea that the depolarising effects in electron storage rings could be interpreted in
terms of FS radiation effects (Bell and Leinaas, 1983; Bell and Hughes, 1985;
Bell and Leinaas, 1987; McDonald, 1987) However, the incomplete radiative
polarization of the electrons in storage rings has been first predicted in early
sixties in the framework of QED by Sokolov and Ternov. Besides, the circular
vacuum noise is not sufficiently “universal” since it always depends on both
acceleration and velocity. This appears as a drawback of the “storage ring electron
thermometry,” not to mention the very intricate spin physics. Keeping these facts
in mind, we go on with further comments, following the nontechnical discussion
of Leinaas (1991).

The circular acceleration in the LEP machine is aLEP = 3 × 1022g⊕ corre-
sponding to the kappa temperature Tκ = 1200◦K . It is a simple matter to show
that an ensemble of electrons in a uniform magnetic field at a nonzero tempera-
ture will have a polarization expressed through the following hyperbolic tangent
Pκ = tanh(πg

2β
). For the classical value of the gyromagnetic factor (g = 2) and for

highly relativistic electrons (β = 1), Pκ = tanh π = 0.996, beyond the limiting
polarization of Sokolov and Ternov PST,max = 8

√
3

15 = 0.924 (Sokolov and Ternov,
1963).

On the other hand, the function

Pκ (g) = tanh

(
πg

2β

)
= 1 − e−πg

1 + e−πg
(65)

is very similar, when plotted, to the function PDK(g), which is a combination
of exponential and polynomial terms in the anomalous part of the gyromagnetic
factor of the electron, and it was obtained through QED calculations by Derbenev
and Kondratenko (1973),

P DK
eq = 8

5
√

3

〈|ρ|−3b̂(n̂ − FDK)〉
〈|ρ|−3(1 − 2/9(n̂ · v̂)2 + 11/18|FDK|2)〉 , (66)

where FDK = γ ∂n̂
∂γ

is the spin–orbit coupling function, which takes into account
the depolarizing effects of jumps between various trajectories differing from the
reference closed orbit, ρ is the bending radius, b̂ a unit vector along the trans-
verse magnetic field component. The brackets indicate an average over the ring
circumference and over the ensemble of particles in the beam. The unit vector n̂ is
the time-independent spin solution of the BMT equation, attached to each particle
trajectory.

The difference between Pκ and PDK is merely a shift of the latter along
the positive g-axis with about 1.2 units. As shown by Bell and Leinaas, when
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the Thomas precession of the electron is included in the spin Hamiltonian, a
shift of 2 units is obtained for Pκ (g). This suggests a more careful treatment
of spin effects arising when one is going from the lab system to the circulating
coordinate frame. A new spin Hamiltonian was introduced by Bell and Leinaas
with a more complicated structure of the field vector in the scalar product with the
Pauli matrices. This complicated structure takes into account the classical external
fields, the quantum radiation field and the fluctuations around the classical path.
Within this more complete treatment, Bell and Leinaas were able to get, to linear
order in the quantum fluctuations, a Thomas-like term and a third resonant term.
The latter is directly related to the vertical fluctuations in the electron orbit, which
are responsible for the spin transitions

PBL = 8

5
√

3

1 − f

6

1 − f

18 + 13
360f 2

(67)

where the resonance factor f reads

f = 2agQ
2

Q2
z − a2

gγ
2
. (68)

Qz is the vertical betatron tune, γ is the Lorentz factor and ag = (g − 2)/2 is the
electron g anomaly. This induces an interesting variation of the beam polarization
close to the resonance. As γ passes through it from below, the polarization first
falls from 92 to −17%, and then it increases again to 99% before stabilizing to
92%. This is the only clear difference from the standard QED. Such resonances
induced by the vertical fluctuations of the orbit have been considered before in
the literature within classical spin diffusion models and focused strictly on their
depolarizing effect. Their nature is related to the fact that the Fourier spectrum of
the energy jumps associated with the quantum emission processes contains har-
monics giving the usual resonance condition. As emphasized by Bell and Leinaas,
a more direct experimental demonstration of the circular vacuum noise would be
the measurement of the vertical fluctuations. However, this will clearly be a very
difficult task since such fluctuations are among the smallest orbit perturbations.
At the same time, the measurement of the polarization variation close to the nar-
row resonance, in particular the detection of transient polarizations exceeding the
Sokolov–Ternov limiting one, will make us more confident in the claims of Bell
and Leinaas. It is worth mentioning that the rapid passage through the resonance
does not change the polarization, while a slow passage reverses it but does not
change the degree of polarization. Therefore, only an intermediate rate with re-
spect to the quantum emission time scale of passing through the resonance will be
appropriate for checking the transient BL effects. Barber and Mane (1988), have
shown that the DK and BL formalisms for the equilibrium degree of radiative
electron polarization are not so different as they might look. They also obtained
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an even more general formula for Peq than the DK and BL ones and from their
formula they estimated as negligible the BL increase near the resonance. It reduces
to the following substitution of the resonance factor

f → f + 2

γ
. (69)

The basic experimental data on spin depolarizing effects remain as yet those
measured at SPEAR at energies around 3.6 GeV in 1983. Away from the resonant
γ ′s the maximum polarization of Sokolov and Ternov was confirmed (Johnson
et al., 1983), but no dedicated study of the polarization rates across resonances
have been performed.

A paper of Cai et al. (1993), claims that the Mashhoon effect due to the spin-
rotation coupling is stronger than the circular vacuum effect (spin-acceleration
coupling) at all accelerator energies in the case of a perfect circular storage ring.
However, the comparison is not at all a straightforward one.

Bautista (1993), solved the Dirac equation in Rindler coordinates with a con-
stant magnetic field in the direction of acceleration and showed that the Bogolubov
coefficients of this problem do not mix up the spin components. Thus there is no
spin polarization due to the acceleration in this case.

In our opinion, the real importance of considering vacuum radiation ef-
fect at storage rings is related to clarifying radiometric features of the syn-
chrotron radiation (Rosu, 1994). There is a strong need to establish radiometric
standards in spectral ranges much beyond those of the cavity/blackbody stan-
dards, and synchrotron radiation has already been considered experimentally
from this point of view (Kühne, 1989). Quantum field thermality is intrinsi-
cally connected to the KMS condition. This is a well-known skew periodicity in
imaginary time of Green’s functions expressing the detailed balance criterion in
field theory. However, the task is to work out in more definite terms the radio-
metric message of the KMS quantum/stochastic processes (Klein and Landau,
1981).

Recently, the spin-flip synchrotron radiation has been experimentally shown
to be important in the hard part of the spectrum in the axial channeling of elec-
trons in the energy range 35–243 GeV incident on a W single crystal (Kirsebom
et al., 2001; Korol et al., 2002). This may revive the interest in the BL ap-
proach, especially in the cleaner planar channeling case (Uggerhøj, private
communication).

3.2. Vacuum FS Radiation and Geonium Physics (a ∼ 1021 g⊕, Tκ = 2.4 K)

The very successful Geonium physics could help detecting the circular thermal-
like vacuum noise. The proposal belongs to Rogers (1988), being one of the
most attractive. The idea of Rogers is to place a small superconducting Penning
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trap in a microwave cavity. A single electron is constrained to move in a cy-
clotron orbit around the trap axis by a uniform magnetic field (Rogers’ figure is
B = 150 kGs). The circular proper acceleration is a = 6 × 1021g⊕ corresponding
to Tκ = 2.4 K. The velocity of the electron is maintained fixed (β = 0.6) by means
of a circularly polarized wave at the electron cyclotron frequency, compensating
also for the irradiated power. The static quadrupole electric field of the trap creates
a quadratic potential well along the trap axis in which the electron oscillates. The
axial frequency is 10.5 GHz (more than 150 times the typical experimental situa-
tion (Brown and Gabrielse, 1986)) for the device scale chosen by Rogers. This is
the measured frequency because it is known (Brown and Gabrielse, 1986), that the
best way of observing the electron motion from the outside world (Feynman’s “rest
of the Universe”) is through the measurement of the current due to the induced
charge on the cap electrodes of the trap, as a consequence of the axial motion of
the electron along the symmetry axis. At 10.5 GHz the difference in energy den-
sities between the circular FS radiation and the universal linear FS radiation are
negligible (see Fig. 2 in Rogers’ work). Actually, Rogers used the parametrization
for the spectral energy density of a massless scalar field as given by Kim et al.
(1987), that he wrote in the form

de

dω
= h

π2c3

[
ω3

2
+ γω3

cx
2

∞∑
n=0

β2n

2n + 1

n∑
k=0

(−1)k
n − k − x

k!(2n − k)
�[n − k − x]

]

(70)
where γ is the relativistic gamma factor, x = ω/γωc, and ωc = eB/γmc is the
cyclotron frequency. The power spectral density at the axial frequency is only
∂P/∂f = 0.47 × 10−22 W/Hz, and may be assumed to be almost the same as the
electromagnetic spectral energy density. This power is resonantly transferred to
the T M010 mode of the microwave cavity and a most sensible cryogenic GaAs
field–effect transistor amplifier should be used to have an acceptable signal-to-
noise ratio of S/N = 0.3. According to Rogers, the signal can be distinguished
from the amplifier noise in about 12 ms.

In conclusion, very stringent conditions are required in the model experiment
of Rogers. Top electronics and cryogenic techniques are involved as well as the
most sophisticated geonium methods. Taking into account the high degree of
precision attained by geonium techniques, one may think of Rogers’ proposal as
one of the most feasible. The critique of this proposal is similar to that in storage
rings (Rosu, 1996): the circular FS radiation is not universal, depending also on
the electron velocity! In addition, Levin et al. (1993), studied the vacuum radiation
effects for a massless scalar field enclosed in a two-dimensional circular cavity
concluding that the effects of finite cavity size on the frequencies of normal modes
of the cavity (Casimir effect) ignored by Bell et al. and by Rogers are in fact quite
important.
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3.2.1. Cylindrical Penning Traps

A better experimental setting for detecting vacuum radiation noises by means
of a trapped quantum detector (electron) may well be the cylindrical Penning trap,
for which the trap itself is a microwave cavity (Tan and Gabrielse, 1989, 1993). In
this case small slits incorporating choke flanges divide high-conductivity copper
cavity walls into the required electrode Penning configuration, including two
compensation electrodes. The driven axial resonance for this configuration has
already been observed with almost the same signal-to-noise ratio as in hyperbolic
Penning traps. By means of these cylindrical cavity traps, a more direct coupling
to the cavity modes may be achieved, especially in the weak coupling regime.
Here the cyclotron oscillator and the cavity mode cannot form normal modes, and
therefore other nonlinear effects are not coming into play. The cylindrical TM010

mode is essentially a zero-order Bessel function in the radial direction and has no
modes along the z axis. The price to pay in the case of the cylindrical trap is a loss
of control on the quality of the electrostatic quadrupole potential.

3.3. Vacuum Radiation From Plasma Fronts (a ∼ 1020 g⊕, T − κ ∼ 1 K)

An experimental equivalent of a fast moving mirror might be a plasma front
created when a gas is suddenly photoionized. This is the proposal of Yablonovitch
(1989). The argument is that the phase shift of the zero-point electromagnetic
field transmitted through a plasma window whose index of refraction is falling
with time (from 1 to 0) is the same as when reflected from an accelerating mirror.
Consider the case of hyperbolic motion. Since the velocity is

v = c tanh (aτ/c) (71)

where τ is the observer’s proper time, the Doppler shift frequency will be

ωD = ω0

√
1 − v/c

1 + v/c
= ω0 exp(−aτ/c) (72)

and consequently a plane wave of frequency ω0 turns into a wave with a time-
dependent frequency. Such waves are called chirped waves in nonlinear optics and
acoustics. Equation (72) represents an exponential chirping valid also for black
holes. For an elementary discussion of Doppler shift for accelerated motion the
reader is directed to a paper of Cochran (1989). It is worthwhile to mention that
in the semiclassical treatment of black hole physics one is usually dealing with
chirped signals, since the WKB functions are generally of variable wavelength,
and by meeting supplementary conditions on their derivatives they are made to
look as much as possible like fixed linear combinations of plane waves. On the
other hand, in the case of wave packets one is always working with the average
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frequency of the wave packets (see, e.g., the paper of Frolov and Novikov on the
dynamical origin of black hole entropy (Frolov and Novikov, 1993).)

The technique of producing plasma fronts/windows in a gas by laser break-
down, and the associated frequency upshifting phenomena (there are also down-
shifts) of the electromagnetic waves interacting with such windows, are well
settled since about 20 years. Blue shifts of about 10% have been usually observed
in the transmitted laser photon energy.

In his paper, Yablonovitch works out a very simple model of a linear chirping
due to a refractive index linearly decreasing with time, n(t) = n0 − ṅt , implying
a Doppler shift of the form ω → ω[1 + ṅ

n
t] ∼ ω[1 + a

c
t]. To have accelerations

a = 1020g⊕ the laser pulses should be less than 1 ps. Even more promising may
be the nonadiabatic photoionization of a semiconductor crystal in which case the
refractive index can be reduced from 3.5 to 0 on the timescale of the optical
pulse. As discussed by Yablonovitch, the pump laser has to be tuned just below
the Urbach tail of a direct-gap semiconductor in order to create weakly bound
virtual electron-hole pairs. These pairs contribute a large reactive component to
the photocurrent since they are readily polarized. The background is due to the
bremsstrahlung emission produced by real electron-hole pairs, and to diminish it
one needs a crystal with a big Urbach slope (the Urbach tail is an exponential
behavior of the absorption coefficient).

3.3.1. Ambiguity of the Interpretation

Yablonovitch remarked that the experimental interpretation is highly ambigu-
ous. There are two types of reasoning:

(i) technologically oriented interpretations
1. A single-cycle microwave squeezing.
2. An inverse quadratic electro-optic effect with zero-point photons as

input waves.
(ii) concept-oriented interpretations

3. Nonadiabatic Casimir effect.
4. Unruh effect.

In general, one should notice the difference between the laboratory and the black
hole/hyperbolic chirping. The former is linear, whereas the latter is exponential.

The “plasma window” of Yablonovitch was criticized in the important paper
by Dodonov, Klimov, and Nikonov [DKN] (Dodonov et al., 1993), on the grounds
that we are not in the case of exponentially small reflection coefficient as required
to get a Planck spectrum from vacuum fluctuations. At the general level, one
may argue that nonstationary Casimir effects may produce some deformed Planck
distributions, and only in particular cases purely Planck distributions. As a matter
of fact, depending on the nonstationarity, one may obtain very peculiar photon
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spectra, and this might be of great interest in applied physics. DKN showed explic-
itly that an exponential “plasma window,” for which presumably the modulation
“depth” is the effective kappa temperature, does not produce a Planck spectrum.
However, for a parametric function displaying the symmetric Epstein profile one
can get in the adiabatic limit a “Wien’s spectrum” with the effective temperature
given by the logarithmic derivative of the variable magnetic permeability with
respect to time. According to DKN this corresponds to a “dielectric window” and
not to a “plasma window.” The experimental realization of nonstationary Casimir
effects are either resonators with moving walls, as first discussed by Moore (1970),
or resonators with time-dependent refractive media as discussed by DKN. On the
lines of Yablonovitch, Hizhnyakov (1992), studied the sudden changes of the re-
fractive index caused by the excitations of a semiconductor near a band-to-band
transition in the infrared by a synchronously pumped subpicosecond dye laser, and
also referred to the analogy with thermal-like radiation. In 1994, Law (1994), com-
bined the moving walls of Moore with the dielectric medium with time-varying
permittivity in a one-dimensional electromagnetic resonant cavity. In this way, he
obtained an effective quadratic Hamiltonian, which is always required when we
want to discuss nonstationary “particle production” effects.

3.4. Vacuum Radiation and Sonoluminescence

A few years ago, Eberlein (1996), claimed that sonoluminescence could be
best interpreted if one goes beyond the perfect mirror restriction. In particular,
whenever an interface between two dielectrics or a dielectric and the vacuum
moves noninertially photons are created (from the vacuum).

Choosing as model profile for the time-dependence of the bubble radius about
the collapse

R2(t) = R2
0 − b

(
R2

0 − R2
min

) 1

(t/γ )2 + 1
, (73)

Eberlein obtained for bubble radius R much greater than the wavelengths of the
light emitted the thermal-like spectral density

S(ω) = (n2 − 1)2

64n2

h

c4γ

(
R2

0 − R2
min

)2
ω3e−2γω, (74)

using only zero-temperature quantum field calculations. She also calculated the
total energy radiated during one acoustic cycle obtaining ∼2 × 10−13 in a lapse
of 1 fs and claimed that this roughly corresponds to the observed number of
photons. Her results were strongly contended by many comments of other people.
In particular, Milton (quant-ph/9608003), used the Larmor formula P = 2

3
(d̈)2

c3

with the electric dipole moment d ∼ eR to estimate the classical Larmor energy
radiated in the flash of bubble collapse, E ∼ αhc a2

c3τ 3 . This leads to only 10 eV
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for a flash of 1 fs. To get 107 eV, the normal energy of the flash, one needs a time
scale as short as 10−17 s, if Larmor radiation alone is invoked. Milton noted that
models are required in which the velocity of the radius is nonrelativistic while the
acceleration becomes very large, and that this situation occurs during the formation
of shocks.

3.5. Vacuum Radiation Effects and Squeezing in Fibers

Grishchuk et al. (1992), discussed a nonlinear Mach–Zehnder configuration
to generate radiation through the optical squeezing of zero-point fluctuations
interacting with a moving index grating. The squeezed vacuum optical radiation
has been generated experimentally by separating the pump light from the squeezed
fluctuations in the MZ interferometric geometry. In Section VIII of their paper the
analogy with the vacuum particle production in cosmology is mentioned. There
are two conditions to accomplish a strong optical squeezing in the laboratory:
one needs to suppress classical noise and phase match the vacuum wave with
the exciting source. These two conditions are very well satisfied by working with
fibers.

3.6. Hyperbolic FS Vacuum Radiation and Channeling
(a ∼ 1030 g⊕, Tκ ∼ 1011 K?)

Relativistic particles can acquire extremely high transverse accelerations
when they are channeled through crystals. Darbinian and collaborators (Darbinian
et al., 1989), related this physical setting to Unruh radiation but as before this is
misleading and more reasonable is an interpretation in terms of a simplified Frenet–
Serret trajectory. We include their interpretation for self-consistency reasons but
one can figure that a FS approach to channeling could be worked out.

The idea is to detect the radiation emitted in the Compton scattering of the
particles with the correlated spectrum of zero-point fluctuations of the crystal
channel. The main argument is that the crystallographic fields are acting with
large transverse accelerations on the channeled particles. The estimated trans-
verse proper acceleration for positrons channeled in the (110) plane of a diamond
crystal is a = 1025 cm/s2, and at γ = 108 one could reach 1033 cm/s2 = 1030g⊕.
Working first in the particle instantaneous rest frame, the Erevan group derived
the spectral angular distribution of the vacuum photons in that frame. By Lorentz
transformation to the lab system they got the number of vacuum photons per unit
length of crystal and averaged over the channeling diameter. At about γ = 108

the vacuum radiation intensity, defined as the intensity per unit pathlength of the
Compton scattering on the Planck vacuum spectrum, becomes comparable with
the Bethe–Heitler bremsstrahlung (dNγ /dE ∝ 1/E, and mean polar emission
angle θ = 1/γ ).
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Incidentally, this is in parallel with some experiments (Behning, 1990; Bini
et al., 1991; Unauthored, 1991), performed at LEP, where the scattering of the LEP
beam from the thermal photon background in the beam pipe has been measured
(the black body photons emitted by the walls of the pipe have a mean energy of
0.07 eV). It is considered as a fortunate case that the effect is too small to affect
the lifetime of the stored beams.

3.7. FS Hyperbolic Vacuum Radiation From TeV
Electrons in External Fields

In another work of the armenian group (Darbinian et al., 1999), the same
type of calculations was applied to get an estimate of the a FS hyperbolic vac-
uum radiation generated by TeV electrons in a uniform magnetic field as well as
in a laser field”. The FS vacuum radiation becomes predominant over the syn-
chrotron radiation only when γ = 109 for H = 5 × 107 Gs and consequently it is
practically impossible to detect it at present linear colliders. Supercolliders with
bunch structure capable of producing magnetic fields of the order 109 G are re-
quired. Pulsar magnetospheres are good candidates for considering such vacuum
radiation patterns.

A circularly polarized laser field seems more promising since in this case
the vacuum radiation could be detectable at lower magnetic fields and energies
(γ = 107). This is due to the fact that the proper centripetal acceleration of the
electron is a = 2ωγη

√
1 + η2, where ω is the frequency of the electromagnetic

wave, and η = eε/mω (ε being the amplitude of the field).

3.8. FS Hyperbolic Vacuum Radiation and Ultraintense
Lasers (a ∼ 1025

g⊕ , Tκ = 1.2106 K)

A very interesting proposal is to disentangle a Frenet–Serret vacuum radiation
pattern in electron Petawatt-class laser interaction. It has been put forth by Chen
and Tajima in 1999, who where motivated by the analogy with a “Unruh effect”
(Chen and Tajima, 1999). In general terms, the probability of the photon emission
depends on the autocorrelation function of the electromagnetic field along the
“trajectory” of the electron. Uniform acceleration through the usual (Minkowski)
quantum vacuum of the electromagnetic field distorts the two-point function of
the zero-point fluctuations (ZPF) in the following way

〈Ei(−τ/2)Ej (+τ/2)〉 = 4h

πc3
δij

(a/c)4

sinh4(aτ/2c)
. (75)

The main point of Tajima and Chen is to introduce the so-called laser strength
parameter a0 (see below) in this formula. In their approach in the leading order
the accelerated electron is assumed “classical,” with well-defined acceleration,
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velocity, and position. This allows to introduce a Lorentz transformation so that
the electron is described in its instantaneous proper frame. Also at this level
the linearly accelerated electron will execute a classical Larmor radiation. As a
response to the Larmor radiation, the electron reacts to the vacuum fluctuations
with a nonrelativistic quivering motion in its proper frame that triggers additional
radiation. The interaction Hamiltonian can be written as

Hint = − e

mc
�p · �A = −e�x · �E. (76)

The probability of the emission of a photon with energy ω = ε′ − ε is

N (ω) = 1

h2

∫
dσ

∫
dτ |〈1�k,ε

′|Hint|ε, 0〉|2

= e2

h2

3∑
i,j

∫
dσ

∫
dτe−iωτ 〈xi(σ )xj (σ )〉〈Ei(σ−)Ej (σ+)〉, (77)

where σ− = σ − τ/2 and σ+ = σ + τ/2 are combinations of σ and τ , the absolute
and relative proper time, respectively. The τ dependence of the position operator
has been extracted to the phase due to a unitary transformation. The last bracket is
the autocorrelation function for the fluctuations of the electric field in the vacuum.

The laser is treated as a plane EM wave and since the interest is in a quasi-
linear acceleration, two identical, counterpropagating plane waves are considered
in order to provide a standing wave

Ex = E0[cos (ω0t − k0z) + cos (ω0t + k0z)], (78)

By = E0[cos (ω0t − k0z) − cos (ω0t + k0z)], (79)

To get the quasi- linear acceleration and hopes for the Unruh signal, one should
carefully tune the “laser” at the nodal points k0z = 0,±2π, . . ., where By = 0
identically for all times and Ex takes the maximum value. At z = 0, Chen and
Tajima find

γβx = 2a0 sin(ω0t) (80)

with

γ =
√

1 + 4a2
0 sin2 ω0t, and a0 = eE0

mcω0
,

the relativistic γ factor and the dimensionless laser strength parameter,
respectively.

The proper acceleration, which is related to that in the laboratory frame by
a = γ 3a1ab, is thus

a = 2ca0ω0 cos ω0t. (81)
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In order to calculate the autocorrelation function, one has to look for the trans-
formation between laboratory and proper spacetimes. As dτ = dt/γ , in the limit
a 
 1 one finds

sin ω0t = tanh(2a0ω0τ )
/√

1 + 4a2
0sech2(2a0ω0τ )

sin k0x = 2a0 cos ω0t
/√

1 + 4a2
0 . (82)

For periodic motion, it is sufficient to examine the cycle −π/2 ≤ ω0t ≤ π/2 →
π/a0 ≤ ω0τ ≤ π/a0. Within the limit where 4a2

0sech2(2a0ω0τ ) 
 1, the above
Equation reduces to

sin ω0t ≈ 1

2a0
sinh(2a0ω0τ ),

cos k0x ≈ 1

2a0
sinh(2a0ω0τ ). (83)

In the limit of small arguments, these can be readily recognized as conformal
transformations of the Rindler transformation for constant acceleration. Thus, the
experiment corresponds to a quasi-constant acceleration and therefore one can use
the known formula (75).

〈Ei(σ − τ/2)Ej (σ + τ/2)〉 = δij

4h

πc3
(2a0ω)4csch4(a0ω0τ ). (84)

From this, with some further mathematical tricks, one arrives at the basic relation-
ships

dN(ω)

dσ
= 1

2π

e2

hc3
(2a0ω0)3〈x2〉

∫ +∞

−∞
dse−isω/a0ω0 csch4(s − iε). (85)

dIκ

dσ
=

∫ ∞

ω0

hdω
dN(ω)

dσ
≈ 12

π

reh

c
(a0ω0)3 log(a0/π ). (86)

The above result applies to an accelerated electron located exactly at z = 0. At
the vicinity of this point, e.g., k0z = ε � 1, there is a nonvanishing magnetic
field |By | = ε|Ex |, which induces a βz ≈ O(ε) in addition to the dominant βx .
Nevertheless, the proper acceleration is affected only to the order ε2

a ≈ 2cω0a0[1 − O(ε2)].

For electrons farther away where the decrease of acceleration becomes more
significant, both the Unruh and the background Larmor radiations will decrease
much more rapidly due to their strong dependences on acceleration. Thus only the
origin and its immediate surroundings are important within this proposal.
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3.8.1. FS Hyperbolic Vacuum Radiation Versus Larmor Radiation

At the classical level, the same linear acceleration induces the Larmor radia-
tion, which is a huge background radiation for the “Frenet–Serret vacuum signal.”
The photon �k space of interest for detection is along the direction of acceleration
where the Larmor radiation is the weakest. A basic assumption is that the two
radiations can be treated as independent processes without interference.
The total Larmor radiation power is

dIL

dt
= 2

3

e2

m2c3

(
dpµ

dτ

dpµ

dτ

)
= 8

3
remca2

0ω
2
0 cos2(ω0t), (87)

and thus the total energy radiated during each laser half-cycle is

�IL = 4π

3
remca2

0ω0.

On the other hand, the hyperbolic vacuum radiation is significant over a reduced
proper time period

ω0�σ ≥ O(1/a0)

Nevertheless, within this time the electron has become relativistic, with γ ∼ a0.
As a result, the total energy radiated in the lab frame, i.e., �Iκ ∼ (dIκ )/(dσ )γ�σ ,
is �Iκ ∼ 12

π
(reh/c)a3

0ω
2
0 log(a0/π ). Thus the relative yield is

�Iκ

�IL

∼ 9

π2

hω0

mc2
a0 log(a0/π ). (88)

Since a0 ∝ 1/ω0, the relative yield is not sensitive to the laser frequency. Chen
and Tajima provided the following estimates of the relative yield

1. Petawatt-class laser. ω0 ∼ 2 · 1015 sec−1 and a0 ∼ 100 → �Iκ

�IL
∼ 3 ·

10−4

2. Free-electron laser-driven coherent X-ray source: hω0 ∼ 10 keV and a0 ∼
10 → �Iκ

�IL
∼ 1

3.8.2. Blind Spot of Larmor Radiation

The Frenet–Serret “thermal fluctuations” are considered isotropic in the elec-
tron’s proper frame resulting in an isotropic induced radiation signal in the same
frame. But since at each half cycle the electron rapidly becomes relativistic, with
γ ∼ a0, the Unruh radiation is boosted along the direction of polarization (x axis)
in the lab frame. Furthermore, as we have discussed above, the autocorrelation
function, and therefore the FS signal, tend to diminish more rapidly than that from
Larmor within the laser half cycle. This should induce a sharper time structure for
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the former. Transforming the FS vacuum radiation power back to the lab frame
with γ ∼ a0, the angular distribution in the small angle expansion becomes

d2Iκ

dt d�
= 4

π2

reh

c

ω3
0a

3
0

[1 + a2
0θ

2]3
. (89)

The Larmor radiation is polarized and its angular distribution in the small (θ, φ)
polar-angle expansion is

d2IL

dt d�
= 8remca2

0ω
2
0

[1 + a2
0θ

2]3

[
1 − 4a2

0θ
2(1 − φ2)

[1 + a2
0θ

2]2

]
. (90)

The Larmor power is minimum at (θ, φ) = (1/a0π, 0), where the angular distri-
bution is zero. Consider a detector which covers an azimuthal angle �φ = 10−3

around the “blind spot,” and an opening polar angle, �θ � 1/a0. Then the partial
radiation power for the FS signal would dominate over that for the Larmor within
this solid angle. A plot confirming this blind spot has been drawn by Rosu (1999),
and is displayed in Fig. 1.

On the other hand, Visser (2001), gave some interesting comments on the
proposal of Chen and Tajima. I transcript here the following rethoric questions of
Visser that he present as a sociology/linguistic issue:

If you ultimately succeed in seeing this zero-point-fluctuations-induced modification
to Larmor radiation, should you really call it the Unruh effect? Or should you just
call it basic quantum field theory? After all you are not directly measuring the Unruh
temperature itself.

3.8.3. How to Create Ultra-low Electrons?

Another important issue for this proposal is how to create ultra-low electrons
at the nodes of the laser pulse. The suggestions of Chen and Tajima are the
following.

Fig. 1. The blind spot of Larmor radiation.
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1. Low energy photoelectrons near the surface of a solid material.
2. Laser-trapped and cooled electrons. Laser-electron interactions occur in

vacuum and there should be minimal additional background effects.
3. Low temperature plasma. The main background effect is the

bremsstrahlung and to have a significant FS vacuum signal the plasma
density should be low enough. The cross section of bremsstrahlung for an
unscreened hydrogen nucleus per unit photon energy is

dχ/hω ∼ 16

3
αr2

e ln(EE′/mc2ω).

The bremsstrahlung yield depends quadratically, whereas the FS signal
linearly on the plasma density. The figure suggested by Chen and Tajima
is np ≤ 1018cm−3 below which the bremsstrahlung background can be
minimized.

3.9. Acceleration Temperature Formula and Damping
in a Linear Focusing Channel

McDonald (1999), applied recently the “Unruh temperature formula” (equiv-
alently, the “Frenet–Serret hyperbolic temperature formula”) for a rapid calcula-
tion of the damping in a linear focusing channel [LFC].2 He used the same idea
some 15 years ago to reproduce Sands’ results on the limits of damping of the
phase volume of beams in electron storage rings.

3.10. Vacuum Acceleration Radiation in Quantum Optics
(Moderate Accelerations Could Work!?)

This is the last proposal I am aware of and belongs to a Scully collaboration
(Scully et al., 2003). The idea is to enhance the vacuum acceleration signal
from an accelerated He+ ion used as a two-level detector of internal transition
frequency ω passing through a high Q “single mode” cavity of frequency ν in the
vicinity of the atomic frequency ω. The enhancement could be very significant
leading to an effective Boltzmann factor linear in the parameter α/2πω, where
α = a/c. By means of quantum optics calculations it can be shown that this type
of thermal effect is due to nonadiabatic transitions stemming from the counter-
rotating term â+

k σ̂+ in the time-dependent atom-field interaction Hamiltonian. The
Larmor radiation lobes (∝ sin2 θ ) are certainly present, but the blind spot in the
forward direction of motion could be employed for the possible detection of this
nonadiabatic effect.

2 The LFC is a transport system that confines the motion of charged particles along straight central
rays by means of a potential quadratic in the transverse spatial coordinates.
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4. RELATED TOPICS

4.1. Unruh Effect and the Anomalous Doppler Effect (ADE)

When studied with the detector method, the FS vacuum radiation effect for a
detector with internal degrees of freedom is very close to the anomalous Doppler
effect (ADE). This is because in both cases the quantum detector is radiating
“photons” while passing onto the upper level and not on the lower one (Frolov
and Ginzburg, 1986), as shown in Fig. 2. It is worthwhile to note that the ADE-
like concept was used by Unruh and Wald (Unruh and Wald, 1984; Higuchi
et al., 1992a,b), without referring to it explicitly, when they considered the Unruh
effect for a uniformly accelerated quantum detector looked upon from the inertial
reference frame. Their main and well-known conclusion was that emission in
an inertial frame corresponds to absorption from the Unruh’s “heat bath” in the
accelerated frame. Essentially one may say the following.

(i) For the observer placed in the noninertial frame the “photon” is unobserv-
able (it belongs to the left wedge in the Rindler case).

(ii) When the observer places himself in an inertial reference frame, he is able
to observe both the excited quantum detector (furnishing at the same time
energy to it) and the “photons.” By writing down the energy–momentum
conservation law he will be inclined to say that the “photons” are emitted
precisely when the detector is excited.

4.2. Brief Review of the ADE Literature

A quantum derivation of the formula for the Doppler effect in a medium has
been given by Ginzburg and Frank already in 1947 (Ginzburg and Frank, 1947),

Fig. 2. The normal and anomalous Doppler effects and the corresponding transitions.



Quantum Vacuum Radiation and Detection Proposals 521

and more detailed discussion has been provided by Frank during 1970–1980
(Frank, 1979). See also the 1993 review paper of Ginzburg (Ginzburg, 1993).

Neglecting recoil, absorption, and dispersion (a completely ideal case) the
elementary radiation events for a two-level detector with the change of the detector
proper energy denoted by δε are classified according to the photon energy formula
(Frolov and Ginzburg, 1986),

hω = − δε

Dγ
(91)

where γ is the relativistic velocity factor (γ > 1) and D is the Doppler directivity
factor

D = 1 − (vn/c) cos θ (92)

The discussion of signs in Eq. (91) implies three cases as follows:

D > 0 for normal Doppler effect (NDE, δε < 0)

D = 0 for Cherenkov effect (CE, δε = 0, undetermined case)

D < 0 for anomalous Doppler effect (ADE, δε > 0).

Consequently, for a quantum system endowed with internal degrees of free-
dom the stationary population of levels is determined by the probability of radiation
in the ADE and NDE regions. The possibility of doing population inversion by
means of ADE has been tackled in the Russian literature since long ago. A quan-
tum system with many levels propagating superluminally in a medium has been
discussed for the first time by Ginzburg and Fain in 1958 (Ginzburg and Fain,
1958). The inverse population of levels by means of ADE or a combination of
ADE and acceleration may be enhanced whenever the ADE region is made larger
than the NDE region. This is possible, e.g., in a medium with a big index of refrac-
tion. Naryshkina (1962), already found in 1962 that the radiation of longitudinal
waves in the ADE region is always greater than in the NDE region. However, her
work remained unnoticed until 1984, when Nemtsov (1984), wrote a short note
on the advantage of using ADE longitudinal waves to invert a quantum system
propagating in an isotropic plasma. The same year, Nemtsov and Eidman (1984),
demonstrated inverse population by ADE for the Landau levels of an electron
beam propagating in a medium to which a constant magnetic field is applied.
More recently, Kurian et al. (1988), have shown that in certain conditions (for
certain range of the parameters), a detector moving with constant superluminous
velocity on a circular trajectory inside a medium may be inverted too. Bolotovsky
and Bykov (1989), have studied the space-time properties of ADE on the simple
case of a superluminous dipole propagating in uniform rectilinear motion in a
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nondispersive medium. These authors are positive with the separate observation
of the ADE phenomenon for this case.

The radiation of a uniformly moving superluminal neutral polarizable particle
has been studied by Meyer (1985). Frolov and Ginzburg (1986), remarked that this
case is an analog of ADE due to zero-point fluctuations of electric polarizability.

Moreover, we can modify the index of refraction in the Doppler factor in
such a manner as to get the ADE conditions already at sublight velocities. In this
way a more direct link to the Unruh effect is available, as has been shown also
by Brevik and Kolbenstvedt (1989). These authors studied in detail the DeWitt
detector moving through a dielectric nondispersive medium with constant velocity
as well as with constant acceleration. In this way, first order perturbation theory
formulas for transition probabilities and rates of emitted energy were exploited.

4.3. Negative Energy Waves as Induced ADE Processes

Let us mention here that one way to look at negative energy waves in plasma
physics is to consider them as a manifestation of induced ADE elementary events
discussed in the book of Nezlin (1982). As a matter of fact, a number of authors
have already dealt with the problem of amplification and generation of electro-
magnetic waves based on ADE in the field of quantum electronics (Ginzburg,
1979; Didenko et al., 1983; Kuzelyev and Rukhadze, 1989). For details on the
nonlinear instabilities in plasmas related to the existence of linear negative energy
perturbations expressed in terms of specific creation and annihilation operators,
and also for a discussion of the complete solution of the three-oscillator case with
Cherry-like nonlinear coupling, one should consult the Trieste series of lectures
delivered by Pfirsch (1991).

4.3.1. ADE Elementary Processes for Channeled Particles

Baryshevskii and Dubovskaya (1976), considered ADE processes for
channeled positrons and electrons.

4.3.2. Negative Energy Waves in Astrophysics/Cosmology

Kandrup and O’Neill (1993), investigated the hamiltonian structure of
the Vlasov–Maxwell system in curved background spacetime with Arnowitz–
Desser–Misner splitting into space plus time, showing the importance of negative
energy modes for time-independent equilibria.

4.4. Acceleration Vacuum Effects and Hadron Physics

The first application of the acceleration vacuum radiation concept to hadron
physics belongs to Barshay and Troost (1978). These authors identified the
hadronic Hagedorn temperature with the Unruh temperature (the Frenet–Serret
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Tκ ). In the same period, Hosoya (1979), and also Horibe (1979), applied moving
mirror models to the thermal gluon production. An estimation of the contribution
of thermal vacuum effects to the process of soft photon production by quarks is
given in a paper by Darbinian et al. (1991). On the other hand, Dey et al. (1993),
related the acceleration temperature to the observed departure from the Gottfried
sum rule for the difference of the proton and neutron structure functions in deep in-
elastic electron scattering. Also, Parentani and Potting (1989), commented on the
relationship between the limiting Hagedorn temperature, the maximal acceleration
and the Hawking temperature.

It is worthwhile to append here the following remark. By coupling an Unruh–
DeWitt detector with energy gap �E to a massive scalar field with mass m > �E

the excitation per proper time of this detector when it is uniformly accelerated
goes, for �E � m, as

P/T ∼ a

∫ ∞

0
dxxK2

0

[√
x2 + (m/a)2

]
(93)

This is clearly nonvanishing because the external agent is making work on the
detector. On the other hand, the same detector lying inertial at rest in Minkowski
spacetime in a thermal bath with temperature T = a/2π will be just unable to
excite because �E < m ≤ ω, where ω is the energy of the massive scalar particles.
This fact does not challenge by any means the Unruh effect because what the Unruh
effect does state is that Eq. (93) can be recovered in the uniformly accelerated
frame by using Unruh’s quantization plus the fact that the Minkowski vacuum is
a thermal state of Unruh particles. This is so because the energy spectrum of the
scalar particles in the Davies–Unruh thermal bath satisfies the constraint (despite
the fact that they are massive) ω ≥ 0 rather than the usual ω ≥ m.

4.5. Decay of Accelerated Protons

The stability of protons has been long used as a basic test for the standard
model of elementary particles. The most recent high-precision experiment set
τp > 1.6 × 1025 years (Caso et al., 1998), higher than the present age of the
universe. However, long ago, Ginzburg and Syrovatskii (1965), speculated on the
possibility of decay in the case of noninertially moving protons.

Recently, Vanzella and Matsas have calculated in the context of standard
QFT (in inertial frames) the weak interaction decay rate for uniformly accelerated
protons (Vanzella and Matsas, 2001),

p+ → n0 + e+
M + νM (94)

and shown that in certain astrophysical situations the proton lifetime may be quite
short. The energy necessary to render the process (94) possible is supplied by the
external accelerating agent. The tree-level formula for the proton proper lifetime in
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1+1 spacetime dimensions (Matsas and Vanzella, 1999), (valid under the no-recoil
condition a � mp) is

τ
p→n

Inert (a) = 2π3/2eπ �m
a

G2
F me

[
G

3 0
1 3

(
m2

e

a2

∣∣∣∣ 1
− 1

2 , 1
2 + i �m

a
, 1

2 ,−i �m
a

)]−1

, (95)

where Gmn
pq is the Meijer function (Gradshteyn and Ryzhik, 1980), a is the proton

proper acceleration, �m ≡ mn − mp and mν = 0 is assumed; mp,mn,me and mν

are the rest masses of the proton, neutron, electron and neutrino, respectively. The
effective Fermi constant GF = 9.9 × 10−13 is determined from phenomenology.

Since a uniformly accelerated proton can be confined in a Rindler wedge
which is a globally hyperbolic spacetime possessing a global time-like isometry,
the associated uniformly accelerated observers (Rindler observers) must be able
to analyze this phenomenon and reobtain the same (scalar) value for the proton
lifetime (95) obtained with standard QFT. Notwithstanding, because of energy
conservation, Rindler observers would simply claim that protons are precluded
from decaying into a neutron through

p+ → n0 + e+
R + νR. (96)

If Unruh’s thermal bath (Minkowski vacuum) is taken into account new channels
are opened:

p+ + e−
R → n0 + νR (97)

p+ + ν̄R → n0 + e+
R (98)

p+ + ν̄R + e−
R → n0, (99)

i.e., from the point of view of the Rindler observers, the proton should be trans-
formed into a neutron through the absorption of a Rindler electron and/or an-
tineutrino from the surrounding thermal bath providing the necessary energy to
allow the process to occur. Any energy in excess can eventually be disposed by
the emission of a neutrino or a positron (depending on the case). Performing an
independent QFT calculation in the uniformly accelerated frame, Vanzella and
Matsas obtained the following proper lifetime for the proton, after combining
(incoherently) processes (97)–(99) in the presence of the vacuum thermal bath:

τ
p→n

Rindler = π2aeπ �m
a

G2
F me

[∫ +∞

−∞
dωR

K 1
2 +i

ωR
a

(me/a)K− 1
2 +i

ωR
a

(me/a)

cosh[π (ωR − �m)/a

]−1

. (100)

Although Eqs. (95) and (100) appear to be quite different, Vanzella and Matsas
have shown numerically that they coincide up to the level (Vanzella and Matsas,
2001),

�−1
∫

�

[(
τ

p→n

Rindler − τ
p→n
inert

)
/τ

p→n

Rinder

]2
dx ∼ 10−16,
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where x ≡ log10(a/1 MeV). This is an impressive result showing in a direct way
that the Unruh interpretation is valid up to the sixteenth decimal figure.

5. CONCLUSIONS

The types of vacuum radiative effects that we have dealt here are in general
manifestations of special quantum field vacuum states with spectral features that
in some cases look similar but are of quite different origin with respect to the usual
thermal thermodynamic effects. A key difference is, for example, that they are due
to highly correlated states with EPR-type correlations (Pringle, 1989; Klyshko,
1991), and not due to a thermal uncorrelated state as the equilibrium states of
statistical mechanics. Some of the most feasible detection proposals are related to
nonadiabatic conditions, i.e., capable of producing very rapid oscillations, with the
special pursuit of those cases in which the nonadiabaticity parameter depends on
the proper acceleration. This allows an association with the Frenet–Serret vacuum
radiations. A direct detection of the scalar vacuum radiation spectra has not been
proposed so far. It requires the noninertial propagation of a source such as either a
dislocation, a vortex, or a domain wall through the corresponding phonon medium.

ACKNOWLEDGMENT

The author wishes to thank D.V. Ahluwalia for the correspondence related to
this work.

REFERENCES

Abbott, L. F. and Wise, M. B. (1981). American Journal of Physics 49, 37.
Artru, X. (1988). Physics Letters A 128, 302.
Audretsch, J., Müller, R., and Holzmann, M. (1995). Classical and Quantum Gravity 12, 2927.
Barber, D. P. and Mane, S. R. (1988). Physical Review A 37, 456.
Barshay, S. and Troost, W. (1978). Physics Letters B 73, 437.
Baryshevskii, V. G. and Dubovskaya, I. Ya. (1976). Soviet Physics-Doklady 21, 741.
Bautista, E. (1993). Physical Review D 48, 783.
Belkacem, A., Cue, N., and Kimball, J. C. (1985). Physics Letters A 111, 86.
Belkacem, A., et al. (1986). Physics Letters B 177, 211.
Bell, J. S. and Leinaas, J. M. (1983). Nuclear Physics B 212, 131.
Bell, J. S., Hughes, R. J., and Leinaas, J. M. (1985). Zeitschrift für Physik C 28, 75.
Bell, J. S. and Leinaas, J. M. (1987). Nuclear Physics B 284, 488.
Bini, C., De Zorzi, G., Diambrini-Palazzi, G., Di Cosimo, G., Di Domenico, A., Gauzzi, P., and Zanello,

D. (1991). Physics Letters B 262, 135. .
Bini, D., Jantzen, R. T., and Merloni, A. (1999). Classical and Quantum Gravity 16, 1.
Bolotovski, B. M. and Bykov, V. P. (1989). Radiofizika 32, 386.
Brevik, I. and Kolbenstvedt, H. (1989). Nuovo Cimento B 103, 45.
Brown, L. S. and Gabrielse, G. (1986). Reviews of Modern Physics 58, 233.
Cai, Y. Q., Lloyd, D. G., and Papini, G. (1993). Physics Letters A 178, 225.



526 Rosu

Candelas, P. and Sciama, D. W. (1977). Physical Review Letters 38, 1372.
Caso, C., et al. (1998). European Physics Journal C 3, 1.
Caticha, A. (1992). Physical Review B 45, 9541.
Chen, P. and Tajima, T. (1999). Physical Review Letters 83, 256.
Cochran, W. (1989). American Journal of Physics 57, 1039.
Cugliandolo, L. F., Kurchan, J., and Peliti, L. (1997). Physical Review E 55, 3898 (condmat/9611044).
Darbinian, S. M., Ispirian, K. A., and Margarian, A. T. (1989). Preprint Yerevan Physics Institute

YERPHY-1188(65)-89 (August 1989).
Darbinian, S. M., Ispirian, K. A., and Margarian, A. T. (1991). Soviet Journal of Nuclear Physics 54,

364.
Darbinian, S. M., Ispirian, K. A., and Margarian, A. T. (1991). Yadernaya Fizika 54, 600.
Darbinian, S. M., Ispiryan, K. A., Ispiryan, M. K., and Margaryan, A. T. (1990). JETP Letters 51, 110.
Dehning, B., Melissinos, A. C., Perrone, F., Rizzo, C., von Holtey, G. (1990). Physics Letters B 249,

145.
Denardo, G. and Percacci, R. (1978). Nuovo Cimento B 48, 81.
Derbenev, Ya. S. and Kondratenko, A. M. (1973). Soviet Physics-JETP 37, 968.
Dey, J., et al. (1993). Physics Letters A 172, 203.
Didenko, A. N., et al. (1983). Pis’ma v JTF 9, 1207.
Dodonov, V. V., Klimov, A. B., and Nikonov, D. E. (1993). Physical Review A 47, 4422.
Dubovskaya, I. Ya., et al. (1993). Journal of Physics: Condensation Matter 5, 7771.
Eberlein, C. (1996a). Physical Review Letters 76, 3842.
Eberlein, C. (1996b). Physical Review A 53, 2772.
Exartier, R. and Peliti, L. (2000). European Physics Journal B 16, 119 (cond-mat)/9910412.
Feynman, R. and Vernon, F. (1963). Annals of Physics 24, 118.
Frank, I. M. (1979). Uspeki Fizicheskii Nauk 129, 685; Vavilov-*Cherenkov Radiation. Theoretical

Aspects, Nauka, Moskow, 1988.
Frolov, V. and Novikov, I. (1993). Physical Review D 48, 4545.
Frolov, V. P. and Ginzburg, V. L. (1986). Physics Letters A 116, 423.
Ghose, P. and Home, D. (1994). Physics Letters A 191, 362.
Ginzburg, N. S. (1979). Radiofizika 22, 470.
Ginzburg, V. L. (1993). In E. Wolf, ed., Progress in Optics XXXII, Elsevier (Russian version in FIAN,

Vol. 176, Nauka, Moskow, 1986). The 1993 version is updated and has a new section with
comments on acceleration radiation.

Ginzburg, V. L. and Fain, V. M. (1958). JETF 35, 817.
Ginzburg, V. L. and Frank, I. M. (1947). Doklady Akademii Nauk 56, 583.
Ginzburg, V. L. and Syrovatskii, S. I. (1965). Uspeki Fizicheskii Nauk 87, 65.
Gradshteyn, I. S. and Ryzhik, I. M. (1980). Table of Integrals, Series and Products, Academic Press,

New York.
Grishchuk, L., Haus, H. A., and Bergman, K. (1992). Physical Review D 46, 1440.
Hacyan, S. and Sarmiento, A. (1986). Physics Letters B 179, 287.
Higuchi, A., Matsas, G. E. A., and Sudarsky, D. (1992a). Physical Review D 46, 3450.
Higuchi, A., Matsas, G. E. A., and Sudarsky, D. (1992b). Physical Review D 45, R3308.
Hizhnyakov, V. V. (1992). Quantum Optics 4, 277.
Honig, E., Schucking, E. L., and Vishveshwara, C. V. (1974). Journal of Mathematical Physics 15,

774.
Horibe, M. (1979). Progress of Theoretical Physics 61, 661.
Hosoya, A. (1979). Progress of Theoretical Physics 61, 280.
Hu, B. L. and Johnson, P. R. (2002). QABP-2, World Scientific, Singapore, quant-ph/0012132.
Iyer, B. R. and Vishveshwara, C. V. (1988). Classical and Quantum Gravity 5, 961.
Iyer, B. R. and Vishveshwara, C. V. (1993). Physical Review D 48, 5706, gr-qc/9310019.



Quantum Vacuum Radiation and Detection Proposals 527

Jadczyk, A. (1995). Progress of Theoretical Physics 93, 631.
Jasper, S. J. (1947). Bulletin of the École Polytechnical Jassy 2, 262.
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